2,3 Turing Machine Type 1,2

The above image comes from Stephen Wolfram’s blog announcing proof of the simplest universal Turing machine. Believe me, I’m not about to describe a Turing machine, but I will happily describe my utter confusion when seeing the image. It initially reminded me of a Sierpinski Triangle, but obviously, something else is going on, and there’s no explanation to help! In my typical, touchy way, I got annoyed at this silly little picture, lacking any caption or descriptive text, presented as some kind of straightforward statement of the problem and its solution. Grrr…

Then I started trying to figure it out. I’ve previously blogged about the Mathematica Player and Wolfram Demonstration Project, and indeed, there’s a similar (actually, mathematically identical) example of a Turing machine in the collection. That discovery clarifies things somewhat, and yet another actually makes it quite comprehensible. In fact, reading the “New Kind of Science” prize from Wolfram’s blog, it became obvious to me that Wolfram (at least, maybe others, for all I know) has a visual shorthand that he uses in describing Turing machines—and that Mathematica evidently uses in displaying them. And I then realized that I had gotten in a huff a little hastily.

Allow me to extol a bit of personal pedagogy. In general (as I’ve mentioned in my “What Is Viz?” presentation), I divide science visualization into three basic types: 1) communication with oneself, 2) communication with a peer group, and 3) communication with public audiences. In typical astronomer parlance, I will refer to these as Type 1, Type 2, and Type 3 visualizations. In this blog, I most often comment on Type 3 visualizations (those addressed to a broad audience), and I initially mistook the above image for that type.

But it’s not. Instead, I think Wolfram has devised a Type 1 visualization of the Turing machine that, thanks to Wolfram’s influence, has transitioned to a Type 2. Presumably, there’s some small audience of “peers” out there for whom the above makes plenty of sense—perhaps they can even extract useful information from it.

Back to Jupiter

I know that I just blogged about the Jovian magnetosphere, but here I go again. And it’s another press release from SwRI, of all things. There’s a lot going on in this diagram! First off, kudos on getting the dipole to look right, but then things get a little confusing…

The profusion of orbit lines and magnetic field lines (or tubes, I guess, if I look at the high-resolution version of the image) might make sense to a well-informed viewer, but they seem confusing for the uninitiated. I’m also wondering why the faint structure that connects the moon Io to Jupiter, which indicates ionized gases trapped in Jupiter’s magnetic field, doesn’t actually follow a magnetic field line. Yeah, they got the dipole bit correct, but then garbled the message! And the Io torus, which also looks somewhat tubular in this depiction, doesn’t seem to lie in the same plane as the orbit lines. All very odd.

Here’s the image caption, BTW: “About [one] ton of volcanic gases are spewed out by Jupiter’s moon Io every second. When ionized, these gases become trapped in Jupiter’s strong magnetic field (shown in blue) and form a vast ring (shown in red) around the planet with Jupiter’s 10-hour spin period. Jupiter’s strong magnetic, rapid rotation and Io’s prodigious source of material result in a giant magnetosphere whose dynamics are very different from the Earth.” Not such a bad explanation, really, although it helps to know that the ionized material rotates along with Jupiter’s 10-hour period, whereas Io orbits more slowly, so the stuff gets smeared out along the length of the moon’s orbit.

If you’re interested in a bit more on the topic, you can also check out an actual image of the Io torus and even see its rotation with Jupiter (the latter page actually has a much better description of the torus than the above as well). Um, did I mention I almost did a Master’s project looking at the Io torus…?

Brightness and Darkness

A brief note. I just ran across “Brightness and Darkness as Perceptual Dimensions” on PLoS. I can’t say I fully grok the contents, but the authors suggest that brightness and darkness behave not simply as polar opposites, rather as axes of a brightness-darkness space (i.e., the brain processes the two differently). Hrm.

As the authors state, “Vision scientists have long adhered to the classic opponent-coding theory of vision, which states that bright–dark, red–green, and blue–yellow form mutually exclusive color pairs.” But, “Here we provide direct evidence that brightness and darkness form the dimensions of a two-dimensional (2-D) achromatic color space. […] Our 2-D model generalizes to the chromatic dimensions of color perception, indicating that redness and greenness (blueness and yellowness) also form perceptual dimensions. Collectively, these findings suggest that human color space is composed of six dimensions, rather than the conventional three.”

Definitely merits a closer reading…

Preaching to the Choir

A press release from the Southwest Research Institute describes observations made of Jupiter’s magnetosphere by the New Horizons spacecraft. The above image (sorry, it’s quite low-res, and to take a closer look, you’ll need to open up the huge version linked from the above) summarizes some of the results. To summarize my response: it would work quite well in a scientific publication, but it just doesn’t cut it for public use.

I admit that it’s nice to see actual data represented—and nice to see an attempt at providing context for them—but the context in which the data fails to help much; furthermore, it really only conveys the context for an expert viewer—one who knows about the solar wind, magnetic fields, and such. In a previous post, I complained about depictions of Earth’s magnetosphere; I won’t bother reiterating my gripes, but they can be applied to the top portion of the above image. Honestly, some version of the schematic portion of the image would probably have sufficed for a press release, but it would have required significant work to be made more comprehensible.

Also, we’re given no hint as to how to read the spectrograms below the schematic diagram, and furthermore, they utilize opaque units such as “Energy/Q [eV/q]” and “DOY 2007 [UT].” Oh, yeah, and pseudocolor. ’Nuff said.

Making matters worse, the picture’s caption incorporates a trult impressive quantity of jargon. To call it “incomprehensible,” at least for public audiences, would be kind. The press release is better, but not by much. The only audience I can imagine picking up on this story is a quite sophistication publication such as Scientific American. I guess that’s all well and good (better than nothing), but a little more effort could make this result more accessible to broader audiences.

(I’ll just add that the New Horizons folks actually produced a spiffy press kit that describes the fly-by, with some decent diagrams, too.)

BTW, I’m in Athens attending the Communicating Astronomy with the Public conference. Fun stuff! And I finally achieved my goal of presenting a PowerPoint using no bullet point slides. A personal victory.